Finite difference schemes and digital waveguide networks for the wave equation: stability, passivity, and numerical dispersion
نویسندگان
چکیده
In this paper, some simple families of explicit two-step finite difference methods for solving the wave equation in two and three spatial dimensions are examined. These schemes depend on several free parameters, and can be associated with so-called interpolated digital waveguide meshes. Special attention is paid to the stability properties of these schemes (in particular the bounds on the space-step/time-step ratio) and their relationship with the passivity condition on the related digital waveguide networks. Boundary conditions are also discussed. An analysis of the directional numerical dispersion properties of these schemes is provided, and minimally directionally-dispersive interpolated digital waveguide meshes are constructed.
منابع مشابه
The new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملOn the Numerical Solution of the 2d Wave Equation with Compact Fdtd Schemes
This paper discusses compact-stencil nite difference time domain (FDTD) schemes for approximating the 2D wave equation in the context of digital audio. Stability, accuracy, and ef ciency are investigated and new ways of viewing and interpreting the results are discussed. It is shown that if a tight accuracy constraint is applied, implicit schemes outperform explicit schemes. The paper also disc...
متن کاملSeismic Wave-Field Propagation Modelling using the Euler Method
Wave-field extrapolation based on solving the wave equation is an important step in seismic modeling and needs a high level of accuracy. It has been implemented through a various numerical methods such as finite difference method as the most popular and conventional one. Moreover, the main drawbacks of the finite difference method are the low level of accuracy and the numerical dispersion for l...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Speech and Audio Processing
دوره 11 شماره
صفحات -
تاریخ انتشار 2003